LÖWENHEIM-SKOLEM PROBLEM FOR FUNCTORS

by R. GUREVIČ

ABSTRACT An expressibility result is proved for infinitary languages.

§1. Introduction

Let \Re be a class of algebraic systems of a fixed similarity type and \mathscr{H} be a class of functors $\mathscr{R} \to a$ class of algebraic systems of possibly another similarity type. Does there exist a cardinal number π such that $\forall P \in \mathscr{R} : \exists Q \in \mathscr{R} : Q \subseteq P \&$ $|Q| < \pi \& (\forall H \in \mathscr{H} : H(Q) \to H(P)$ is an embedding of an elementary submodel)? I'll prove below an expressibility result for infinitary languages which implies that the answer is positive whenever \mathscr{R} satisfies a kind of Löwenheim-Skolem theorem and elements of \mathscr{H} preserve lim's.

I met a problem of this kind in topology: find $\exists = \min\{\exists \mid \forall ring R : \exists subring R' \subseteq R : |R'| < \exists \& \forall compact pair X \supseteq Y : \check{H}(X, Y; R') \rightarrow \check{H}(X, Y; R)$ is an embedding of an elementary submodel}, where \check{H} is the functor of Čech cohomologies. I thank the referee for his suggestion to state the main result in a general form mentioning no topological space but only categories and functors. Topological applications are presented at the end of the paper.

§2. Preliminaries

A functor H will be called continuous if $H(\lim -) = \lim_{\to \infty} H(-)$. A functor will be called algebraic if its values are algebraic systems and homomorphisms.

Let \mathcal{X} be a category and \mathcal{B} be a small subcategory of \mathcal{X} . \mathcal{B} will be called a base for \mathcal{X} if every object from \mathcal{X} is lim of a direct spectrum consisting of objects and arrows from \mathcal{B} and for any $A \to K$, $B \to K$, $A, B \in \mathcal{B}$, $K \in \mathcal{X}$, there exist $A \to C$, $B \to C \in \operatorname{Arr}(\mathcal{B})$, $C \to K$ such that the diagram

Received March 20, 1980

is commutative.

Let \mathcal{X} be a class of algebraic systems of a similarity type σ . \mathcal{X} will be called 1-based $(1 \ge \aleph_0 + |\sigma|)$ if \mathcal{X} possesses a base \mathcal{B} of cardinality ≤ 1 and such that every object from \mathcal{B} is freely generated in \mathcal{X} by <1 generators and relations. (Note that every object X is freely generated by $\le \aleph_0 + |X| + |\sigma|$ generators and relations.)

EXAMPLES. Čech cohomology functor: (the dual to the category of compact pairs) \times rings \rightarrow algebras is continuous and algebraic. Every quasivariety (see [2]) of a similarity type σ is $|\sigma|$ -based (the base should consist of finitely presentable objects and their homomorphisms). The class of fields is \aleph_0 -based.

Expressions like $L_{\lambda\mu}$ -elementary, $L_{\lambda\mu}$ -sentences, ... will be abbreviated below to $\lambda\mu$ -elementary, $\lambda\mu$ -sentences, ... λ_{ξ} 's are defined for any cardinal λ as follows: $\lambda_0 = \lambda$, $\lambda_{\mu+1} = 2^{\lambda_{\mu}}$, $\lambda_{\lambda} = \sup{\{\lambda_{\mu} \mid \mu < \lambda\}}$ for limit λ .

§3. Let \mathcal{K} be 1-based, \mathcal{B} be an appropriate base for \mathcal{K} and \mathcal{H} be the class of all continuous algebraic functors defined on \mathcal{K} .

For $K \in \mathcal{X}$, $H \in \mathcal{H}$ and $c_1, \dots, c_n \in H(K)$ one can consider the properties of \vec{c} with respect to H(K) in the following way: find a B in $Ob(\mathcal{B})$, a homomorphism $k: B \to K$ and $b_1, \dots, b_n \in H(B)$ such that \vec{c} is the image of \vec{b} under $H(k): H(B) \to H(K)$, and translate sentences about \vec{c} into sentences about images in K of generators of B.

For brevity and simplicity I'll consider only $\infty \omega$ -sentences about elements of H(K)'s instead of arbitrary $\infty \alpha$ -sentences. Define function ord on $\infty \omega$ -formulae with finitely many free variables: $\operatorname{ord}(\varphi) = 1$ for atomic φ , $\operatorname{ord}(\neg \varphi) = \operatorname{ord}(\varphi)$, $\operatorname{ord}((\forall x)\varphi) = 2^{\operatorname{ord}(\varphi)}$, $\operatorname{ord}(\& \{\varphi_t \mid t \in T\}) = \mathcal{Y} + \min(|T|, 2^{\mathcal{Y}})$, where $\mathcal{Y} = \sup \{\operatorname{ord}(\varphi_t) \mid t \in T\}$.

THEOREM 1. For any $B \in Ob(\mathcal{B})$ and a system of its generators of cardinality < 1, $H \in \mathcal{H}$, $b_1, \dots, b_n \in H(B)$ and $\varphi(x_1, \dots, x_n) \in L_{\infty}(\tau)$, where τ is the similarity type of values of H, there exists a $\Phi \in L_{n,1}(\sigma)$, where $\mathbf{n} = (\text{ord}(\varphi))^+$, such that for any $K \in \mathcal{H}$ and homomorphism $k : B \to K$ we have : $\varphi(H(k)(\vec{b}))$ in H(K) if and only if $\Phi(\text{image in } K \text{ of } a \text{ system of generators of } B)$.

Such Φ will be denoted by $\Phi_{\varphi,B,\vec{b},H}$.

PROOF. Proceed by induction on φ .

(i) Let φ be atomic and Σ be the list of homomorphisms $j: B \to C \in \operatorname{Arr}(\mathcal{B})$ such that $\varphi(H(j)(\vec{b}))$. Augment each such j with a system of cardinality <1 of generators and defining relations for $C, \Xi = \{(j, \text{generators and relations}) | j \in \Sigma\}$. Put $\Phi(\vec{g}) = \vee \{S_{\xi}(\vec{g}) | \xi \in \Xi\}$, where $S_{\xi}(\vec{g}) = \exists \vec{g}_1: \langle \langle \vec{g}_1 \text{ satisfies defining relations}$ of ξ for generators of C and \vec{g} is mapped into C according to $\xi \rangle$, where \vec{g}_1 is of appropriate cardinality. It is clear that $\langle \langle \rangle \rangle$ above is expressible in $L_n(\sigma)$ and since $|\Xi| \leq 1$ we have $\Phi \in L_{n,i}(\sigma)$.

(ii) Put $\Phi_{\neg \varphi, \cdots} = \neg \Phi_{\varphi, \cdots}$ and $\Phi_{\&, \varphi_{p}, \cdots} = \&_{\iota} \Phi_{\varphi_{p}, \cdots}$.

(iii) Let $\varphi = (\forall x)\psi(x, \cdots)$. Let Ξ be the list of all homomorphisms $B \to C \in$ Arr(\mathscr{B}) each augmented with a system of cardinality <1 of generators and defining relations for C. Put $\Phi_{\varphi,B,\vec{b},H} = \&\{S_{\xi}(\vec{g}) | \xi \in \Xi\}$, where $S_{\xi}(\vec{g}) = \&\{(\forall \vec{g}_1)(\langle\langle \vec{g}_1 \text{ satisfies defining relations of } \xi \text{ for generators of } C \text{ and } \vec{g} \text{ is mapped} into C according to <math>\xi\rangle\rangle \Rightarrow \Phi_{\psi,C,\vec{c}',c,H}(\vec{g}_1)) | \varsigma \in H(C)\}$, where \vec{g}_1 is of appropriate cardinality and \vec{c} is the image of \vec{b} under the homomorphism $H(B) \to H(C)$ corresponding to ξ . Since $\Phi_{\psi,\cdots}$'s belong to $L_n(\sigma)$, where $\mathbf{l} = (\underline{\mathrm{ord}}(\psi))'$, we have $\Phi_{\psi,\cdots} \in L_{\mathbf{g}_1}(\sigma)$.

COROLLARY 2. Let $A, B \in \mathcal{H}, H \in \mathcal{H}$ and $\forall > 1$. If A, B are $\forall, 1$ -equivalent then H(A), H(B) are equivalent with respect to sentences of $\underline{\text{ord}} < \forall$. If $A \subseteq B$ and A is $\forall, 1$ -elementary in B then the corresponding $H(A) \rightarrow H(B)$ is an embedding and the image of H(A) is elementary in H(B) with respect to formulae of $\underline{\text{ord}} < \forall$.

 \mathscr{X} will be called \checkmark -Löwenheim if for any $A \in \mathscr{X}$ and a set $X \subseteq A$ there exists $B \in \mathscr{X}$ such that $X \subseteq B \subseteq A$ and $|B| \leq |X| + \flat$.

COROLLARY 3. If \mathcal{H} is \flat -Löwenheim and is closed under unions of increasing sequences, then for any $A \in \mathcal{H}$ there exists $B \in \mathcal{H}$ such that $B \subseteq A$, $H(B) \rightarrow H(A)$ for any $H \in \mathcal{H}$ is an embedding of an elementary submodel, and $|B| \leq \lambda_{\omega}$ with $\lambda = \flat$.

§4. Topological remarks

COROLLARY 4. For \neg mentioned in the introduction: $\neg \leq (\lambda_{\omega})^{\uparrow}$ with $\lambda = \aleph_0$.

Let H be an algebraic functor continuous on the dual of the category of compact pairs (or other combinations of compact spaces likely for topology). Since $H(X) = \lim_{X \to T} H($ the spectrum of all PL-approximations of X) for any X, the class of all continuous H's with values of a fixed similarity type τ can be regarded as a single continuous functor on (the dual of the category of compact

pairs)×(the class of algebraic systems of the similarity type τ^{\uparrow} satisfying appropriate equalities), where $\tau^{\uparrow} = \tau \cup$ (relations corresponding to values of H on PL-pairs, and operations corresponding to PL-maps).

COROLLARY 5. For any contravariant continuous algebraic functor H on the category of compact pairs there exist a functor H_1 of the same kind and transformation $H_1 \rightarrow H$ such that $H_1(X) \rightarrow H(X)$ is an embedding of an elementary submodel for any X and $|H_1(X)| \leq \nabla + \lambda_{\omega}$ for $|X| \leq \nabla + \lambda_{\omega}$, with $\lambda = \aleph_0$ and $\nabla = |$ similarity type of values of H|.

I don't know whether the above cardinal bounds are exact. Doubts are based in part on the following result (proof will appear elsewhere).

PROPOSITION 6. For any compact pair $X \supseteq Y$ and a ring R there exist a countable subring $R' \subseteq R$, metric compacts $X' \supseteq Y'$ and an onto map $(X, Y) \rightarrow (X', Y')$ such that $\check{H}(X', Y'; R') \rightarrow \check{H}(X, Y; R)$ is an embedding of an elementary submodel.

References

1. M. A. Dickmann, Large Infinitary Languages, Model Theory, North-Holland, 1975.

- 2. A. I. Malcev, Algebraic Systems, "Nauka", Moscow, 1970 (Russian).
- 3. E. Spanier, Algebraic Topology, McGraw-Hill, 1966.

MAURICE THOREZ, 33, APT 205 LENINGRAD 194223 USSR